NASA Earth Science and Applications from Space Strategic Roadmap Committee

Wrap-up Summary Notes from January 27, 2005

(Corrections, Cover Page added 2/2/2005)

Changes Since Bretherton

- Advances in Biology
- Human Impacts
- Advances in Technology

- Define Objectives
- Missions or Activities Pathways/Options
- Tangible Missions, Something New, What is Frontier?
- Figures of Merit

- Explorations
 - Waleed Abdalati*
 - David Siegel
 - Sean Solomon
 - Leo Andreoli
 - Bill Gail

(Full names added 2/2/2005 -- asterisk indicates subcommittee lead)

- Continuous Awareness
 - Doug Rotman*
 - Walt Brooks
 - Chris Kummerow
 - David Skole
 - Jack Dangermond

(Full names added 2/2/2005 -- asterisk indicates subcommittee lead)

- Maintaining Perspectives
 - Colleen Hartman*
 - Victor Zlotnicki
 - Joyce Penner
 - Eric Sanderson

(Full names added 2/2/2005 -- asterisk indicates subcommittee lead)

- Explore the Frontiers of Science
 - Responsive system of ground- and ocean-based sensors, NASA missions can directly interact
 - Signposts to the Frontier
 - What Defines the Frontier
 - Places we've never seen
 - Processes we don't understand
 - Phenomena we can't yet sample
 - Perspectives we have not yet used
 - Connection Between Earth Exploration and Exploration of the Solar System

- Explore the Frontiers of Science
 - Solid Earth
 - Integration of biological processes
 - Human impact on climate
 - Quantitative estimate of change in human impacts

- Explore the Frontiers of Science
 - Biology
 - Bottom of the Ice, Bottom of the Ocean
 - Analog Environments
 - Integrating Space Observations
 - E.g., tundra, gas fluxes
- Feedback of Human Activities
- "What Ifs?" Earth as Laboratory for Planetary Exploration
- Follow the water, follow the energy,

- Missions (program, campaign):
 - Environmental Change Forecast Uncertainty Mission
 - Human Impact on the Earth Mission
- Take NSF Document, assess NASA's role

Continuous Awareness

- Cost of models vs. cost of missions
 - Replace diagnostic models with direct measurements; shift to prognostic modeling?
 - Relationship between space observations and models
- Distribution of life on Earth and how it is changing
- New Science Enabled by Cont. Awareness
 - What Objective, what components?
 - How do for less?
- 4-D Models and Data Assimilation

Continuous Awareness

- What critical problems would such systems address?
 - Carbon cycle disturbances
 - Land cover changes, Agriculture and food
 - Ecosystem services; understanding the value (economic) of services performed by ecosystems
 - Water follow the water (dynamic cycling)
 - Hazards
 - Air Pollution
 - Aid the decision-making process protection of proprietary data sources?
- Active Tasking of Observing Assets and Models

- Distinguished from Continuous Awareness by Long Time Scales
- Sustaining of Long-term Data Sets and Observations
 - First Collection 50 year Data Sets is Frontier Science
 - What phenomena require long-term data records to satisfy NASA science goals?
 - Example of Environmental Data Records (not method dependent)

- Transition from Research to Operations
 - MOU with Operational Agency from the start?
 - Is 5 years of research operations enough to develop operational agency user base?
 - Assumptions about who should do what, role of NASA, NOAA, potentially other Agencies, Commercial Entities
 - What about important data sets with no target operational/commercial entity?

- Data Stewardship
- Long Term Measurements (100 year)
 - NASA can take on the technological challenges of how to obtain and maintain 100 year data sets (and modeling results?)
 - Consistency in measurement vs. upgrading of instrument technology and capacity
 - Inter-instrument calibration vs. very long life observatories
 - Implications and trade-offs for calibration and validation and data management
 - Does the operational agency need that level of calibration (what if it is not a goal of the operational agency)?
 - Request for Staff assessment of how to run a 100 year program

- Analysis of Prediction Capability
 - Long-term, high quality modeling, not necessarily near-realtime
 - Forecasts and Hindcasts (paleoclimate)
 - Reanalysis, access to past model results, and inter-model comparisons
- What are specific ways NASA can strengthen this goal
 - Technologies
 - Architectures
 - Others?
- Identify a few exciting things